Metric Learning for Kernel Regression
نویسندگان
چکیده
Kernel regression is a well-established method for nonlinear regression in which the target value for a test point is estimated using a weighted average of the surrounding training samples. The weights are typically obtained by applying a distance-based kernel function to each of the samples, which presumes the existence of a well-defined distance metric. In this paper, we construct a novel algorithm for supervised metric learning, which learns a distance function by directly minimizing the leave-one-out regression error. We show that our algorithm makes kernel regression comparable with the state of the art on several benchmark datasets, and we provide efficient implementation details enabling application to datasets with ∼O(10k) instances. Further, we show that our algorithm can be viewed as a supervised variation of PCA and can be used for dimensionality reduction and high dimensional data visualization.
منابع مشابه
Composite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملKernel Regression with Sparse Metric Learning
Kernel regression is a popular non-parametric fitting technique. It aims at learning a function which estimates the targets for test inputs as precise as possible. Generally, the function value for a test input is estimated by a weighted average of the surrounding training examples. The weights are typically computed by a distancebased kernel function and they strongly depend on the distances b...
متن کاملReal-Time 2D/3D Deformable Registration Using Metric Learning
We present a novel 2D/3D deformable registration method, called Registration Efficiency and Accuracy through Learning Metric on Shape (REALMS), that can support real-time Image-Guided Radiation Therapy (IGRT ). The method consists of two stages: planning-time learning and registration. In the planning-time learning, it firstly models the patient’s 3D deformation space from the patient’s time-va...
متن کاملLNCS 7766 - Medical Computer Vision
We present a novel 2D/3D deformable registration method, called Registration Efficiency and Accuracy through Learning Metric on Shape (REALMS), that can support real-time Image-Guided Radiation Therapy (IGRT ). The method consists of two stages: planning-time learning and registration. In the planning-time learning, it firstly models the patient’s 3D deformation space from the patient’s time-va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007